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Abstract. The selective site percolation is studied on three kinds of triangular lattice, TC, 
TK and TH lattices, by using renormalisation groups. The recursion relations on  occ_upation 
probabilities are solved to give global phasediagrams with scaling factor b = 43, 2 and 
3 for the TC lattice, and with b = J 3  and J7 for TK and TH lattices respectively. The 
phase boundaries are obtained correctly with the flow direction towards a single isotropic 
fixed point. This result is in accordance with the anisotropic bond result and consistent 
with the universality hypothesis. In the extreme anisotropy limit of site preference, these 
boundaries give good estimates of the critical concentration p c  of chain, KagomC and 
honeycomb lattices. Especially, in the chain limit for the TC lattice, the critical exponents 
of both the correlation length v = 1 and the dimensionality crossover 4 = 1 are reproduced 
exactly. The dependence of total p c  on site selectivity is also discussed. 

1. Introduction 

The percolation problem has been extensively studied because of its applicability to 
a variety of physical phenomena and its close relationship with thermal phase transitions 
(see e.g. Essam 1972, Stauffer 1979). The extension of the simple site and bond 
percolations to several directions has also been tried, for example correlated site, 
directed bond and combined site-bond percolation etc (Zhang 1982, Essam and 
De’Bell 1981, Guttmann and Whittington 1982, and references therein). 

The anisotropic bond percolation is another example of such extensions. In this 
problem, different occupation probabilities are assumed for bonds placed in different 
coordinate directions. This model was first introduced for spatial dimensionality d = 2 
(Sykes and Essam 1963) and later studied in detail for all d (Redner and Stanley 
1979). The primary reason for studying this anisotropic model is to describe the 
dimensional crossover behaviour between different d.  In recent years, the renormalisa- 
tion group transformation (RGT) was applied to the problem for d = 2 by various 
authors (Ikeda 1979, Chaves et al 1979, de MagalhHes et a[ 1981, Nakanishi et a1 
1981, Oliveira 1982), and the exact phase boundary with exact exponents for both 
crossover q5 = 1 and correlation length v = 1 in the chain limit was reproduced success- 
fully (Oliveira 1982). 

In contrast to the above, the corresponding inhomogeneous site percolation, or 
the percolation on a lattice having anisotropy of site preference, has been much less 
studied. Recently, Scholl and Binder (1980) have proposed the selective site percola- 
tion (SSP) in a two-sublattice system, assuming different occupation probabilities for 

@ 1983 The Institute of Physics 2501 



2502 T Idogaki and N Urya 

both sublattices. They paid particular attention to the case of spinel structure, and 
the critical exponent and the critical concentration p c  have been calculated by the 
Monte Carlo method. In a previous letter (Idogaki and UryG 1982a), we considered 
the SSP on a square lattice by using RGT. With interactions up to the third neighbour, 
it was found that the SSP offers a simple method to estimate the p c  for homogeneous 
classical site percolation (CSP), and the applicability of the idea to other lattice structures 
was suggested. 

In this paper, we study the SSP on a triangular lattice, in which two inequivalent 
sites A and B with independent occupation probabilities pA and p B  are distributed 
regularly. We consider three kinds of distribution, triangular-chain (TC), triangular- 
Kagomk (TK) and triangular-honeycomb (TH) lattices as shown in figure 1. Interactions 
are assumed between all neighbouring sites. These systems show the crossover from 
the isotropic triangular lattice at pa = PB to the chain, Kagome and honeycomb lattices, 
respectively, in the extreme anisotropy limit of p E  = 0. Those systems have two distinct 
phases depending on the pA and p B  values, the percolating phase and the non- 
percolating one. In the latter phase, all occupied sites fall into a number of finite 
clusters, while there appears an infinite network of occupied sites in the former phase. 

Figure 1. Various two-sublattice configurations on a triangular lattice: ( a )  triangular-chain 
(TC), ( 6 )  triangular-Kagome (TK) and ( c )  triangular-honeycomb (TH) lattices. The full 
and open circles represent the A and B sites with occupation probabilities pA and p s ,  
respectively. 

The purpose of this paper is to give the global phase diagram for three lattices 
and to study the critical behaviour of SSP. In general, the standard percolation problem 
and its variants, for example correlated site and anisotropic bond etc, are believed to 
belong to the same universality class and thus have the same critical exponents (Zhang 
1982, Guttmann and Whittington 1982, Oliveira 1982). However, it is claimed that 
this is not the case for directed percolation (KertCsz and Vicsek 1980). Then, it is 
significant to check the question in the present case. The TC lattice gives a site version 
of the dimensional crossover between d = 1 and d = 2, which has been well investigated 
for the bond case as mentioned previously. In particular, it is firmly believed that the 
bond and site percolation problems reveal the same critical behaviour since they are 
interconnected through the concept of a covering lattice (Sykes and Essam 1964). So 
the aim of studying the TC lattice is twofold: a direct interest for the site problem and 
a verification of the bond results from a different point of view. The preliminary 
result for the TC lattice was reported by Idogaki and Uryt  (1982b). 

The simplest way to discuss the phase boundary of the problem is to approximate 
the regular distribution of TC, TK and TH lattices by the triangular-random (TR) lattice, 
in which A and B sites are distributed randomly with the same concentration cA and 
cB of A and B sites as those of the original regular lattices. 
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Owing to its perfect randomness, an arbitrary site on a TR lattice is occupied with 
the same averaged occupation probability: p = C A P A  + C B ~ B .  The critical concentration 
for the isotropic triangular lattice is known exactly and is given by p c  = $ (Sykes and 
Essam 1963). Then, the percolating region in the parameter space is directly given by 

c A P A + ( ~ - c A ) P B  3 4 ,  ( 1 . 1 )  
with the use of the relation cA +ce = 1. The phase diagram obtained by this random 
distribution approximation (RDA) is shown in figure 2. If we put cA = f, and J ,  we 
get the following phase boundaries for each lattice: 

TC lattice 

2 

p i  + p ;  = 1 

3 p L  +pCB = 2 TK lattice (1.2) 

4pL + 2 p ;  = 3 TH lattice. 

Figure 2. The percolation phase diagram for the TR lattice in the parameter space of pa, 
P E  and CA ( = l - C B ) .  

Equation (1.2) for the TC lattice coincides with the exact one obtained by Ikeda (1979) 
using graph theory. Now we define the anisotropy parameter y = p e / p A ,  which 
represents the degree of site preference. For TK and TH lattices, the total critical 
concentration p c  = cAp> +cBp;  is expected to depend on y,  since the topological 
geometries of two sublattices are non-equivalent for these lattices. For all the lattices, 
however, we found that equation (1.2) gives a constant value of p c  = $ independent 
of y.  This shows that the critical line by the RDA is not accurate in the whole region 
of pA and p B  except for the TC lattice. In any case, it is impossible to calculate the 
critical exponent and to discuss the universality class of SSP by this simple RDA. 

In the present article, we study the SSP on the triangular lattice by applying the 
RGT developed in previous papers (Idogaki and UryC 1982a, 1982b). A preferred-cell 
to preferred-site transformation keeping the original lattice symmetry is expected to 
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give correct phase diagrams in the whole region. The extension of the parameter 
space enables us to get new estimates of pc for Kagom6 and honeycomb lattices which 
can be used to check the accuracy of the present calculation. Furthermore, from the 
flow direction on the phase boundary, it will be possible to check the universality 
hypothesis. In 0 2, we first summarise the two-parameter RGT. Then, the theory is 
applied to TC, TK and TH lattices by using the three-site cell scaling. In 0 3, a similar 
calculation is performed by using the large-cell division to confirm the result in 0 2. 
Finally in 0 4, a summary of the results is given with some concluding remarks. 

2. Renormalisation group transformation 

2.1. Basic theory 

In this section, we give a brief description of the RGT (see e.g. Niemeyer and Van 
Leeuwen 1976, Ma 1976) applied to the two-parameter percolation problem 
(Reynolds et ai' 1977a). The RGT starts from partitioning a &dimensional lattice into 
cells of b d  sites. Each cell has the role of a renormalised site preserving its original 
lattice symmetry. The original and the renormalised occupation probabilities are 
related by a certain prescription as (see 00 2.2 and 3): 

Ph = K ( { P a l )  a = A ,  B. (2.1) 

p t  =R,({p,*H a = A ,  B.  (2.2) 

Those recursion relations have a 'fixed point' { p : }  satisfying 

Since the RGT decreases the lattice spacing by a scaling factor b, the mean size of a 
connected cluster 5 is expected to obey the relation 

5({PhD = b- '5( {pal )  a = A ,  B.  (2.3) 
Equation (2.3) shows that the fixed point physically corresponds to either 5 = 0  or 
(=m, and thus the percolation threshold at which ( = C O  is to be associated with a 
non-trivial fixed point of equation (2.2). 

For the discussion of the critical exponent, we expand p h  around the non-trivial 
fixed point as 

(2.4) 

where 6 p a = p a - p 2  and TZ,@ means aph/ape evaluated at the fixed point. The 
linearised RGT matrix [ T & ]  gives eigenvalues A i  (A 2 A J  and the corresponding left 
and right eigenvectors are ($k, 4;) and (x6, x s ) ,  respectively. The normal coordinates 
introduced by 

Sph =I Tz.&pa +. . . a, /3 = A ,  B 
B 

transform as Sui =A,-& under the scaling. The subspace {Sui = 0) for A i  > 1 defines 
the critical surface, on which all points are driven to the fixed point by successive RGT. 

From equations (2.2)-(2.5), 5 satisfies the relation 

5 ( p )  = &( p *  +E Aisuiei + . * (2.6) 
i 
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where 
p = pueu ei = C xhe, a = A,  B and i = 1,2 (2.7) 

axis. With the use of the scaling power y i  defined 

(2.8) 
with the crossover exponent C$ = y2/y1 .  If A 1  > 1 > A 2  and SuZ(SuJ’ -- 0, the critical 
behaviour of ( is represented by 

where 

U U 

and ea is the unit vector along the 
by A i  = 6’1 and setting 6 = (Sui)-' ’l, equation (2.6) can be written as p. 

( ( p )  = (Sul)-”Y’S(p*+el+Suz(Sul)-’ez+. . .) 

~ a ( S u I ) - l ’ y l  = (sui)-" (2.9) 

v = y;’ =In 6/ln A l  (2.10) 

describes the divergence of the mean size of finite clusters, i.e. Y is the analogue of 
the thermal correlation length exponent. 

2.2. Recursion relation and fixed point 

’Ihe RGT mentioned above is applie_d to the TC, TK and TH lattices. We consider the 
simplest three-site scaling of 6 = J3. The basic scaling procedure is shown in figure 
3. For the convenience of calculation, we distinguish the two types of cell which 
appear in figure 3. The first is the type-I cell which includes only one kind of site A 
or B, and the second is the type-I1 cell which includes both A and B sites. In the 
scaling, we transform the cell having the larger number of a-sites (a = A  or B )  into 
a new a-site with renormalised occupation probability ph. Following Reynolds et a1 
(1977a), we count p’  by a majority rule, i.e. a cell is defined as occupied if and only 
if all three sites or any two sites are occupied. This rule gives the probabilities for 
getting across the cell as 

(2.11) 

for type-I and type-I1 cells, respectively. 
As seen from figure 3, the TC lattice can be scaled by two kinds of type-I1 cell 

which are mutually translated by pA - p B  permutation. The recursion relations are 
given by 

PL = R L ( P A ,  P B )  pb = R L ( p B ,  PA) .  (2.12) 

( a  I ib l  IC1 

Figure 3. The renormalisation transformation by b = 45 scaling for ( a )  TC, ( b )  TK and 
( c )  TH lattices. The full and open circles show the original (or renormalised) A and E 
sites, respectively. The hatched circle represents the unicolour site after renormalisation 
for the TH lattice. 
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For the TK lattice, both type-I and type-I1 cells appear. In this case, the geometrical 
array of renormalised A and B sites is perfectly inverted from the original one under 
the scaling. Then, the following successive twofold scaling is required to reproduce 
the original lattice symmetry: 

p x  =RE(RE(PA,Pe), RL(PA)) PL =RL(RE(PA,~B)). (2.13) 

From equations (2.12) and (2.13), it is obvious that if pa L p p ,  the relation p &  >pb 
always holds (a, p =A,  B ) .  Contrary to the above, for the TH lattice, type-I1 cells of 
only one kind appear and the renormalised sites become colourless, i.e. 

p i  'pb = R L ( P A , P B ) *  (2.14) 

It is easily seen that equations (2.12)-(2.14) have two trivial fixed points ( p : ,  p g )  = 
(0,O) and (1, 1) at which if = 0. For all lattices, we found a non-trivial fixed point 
( p : ,  p g )  = (1,;) corresponding to the isotropic triangular lattice, with additional ones 
( 1 , O )  and (0, 1) in the chain limits for the TC lattice. From equation (2.10), the 
correlation length exponents v(d) at the fixed points of isotropic and chain limits are 
calculated as v(2) = 1.355 and v(1 )  = 0.792, respectively. The expected values are 
v(2 )=$  (den Nijs 1979, Derrida and de Seze 1982) and v ( l ) =  1 (Reynolds et a1 
1977b). Near the isotropic fixed point, the phase boundary is well represented by the 
linear approximation of equation (2 .5 )  by setting SUI = 0, and the results agree with 
those given in equation (1.2). 

2.3. Phase diagram 

To obtain the precise phase boundary in the whole region, we should not restrict 
ourselves to the linear approximation. By starting from some initial points, we iterate 
the recursion relations on the computer. The flow trajectory enables us to obtain the 
entire phase diagram. The results for TC and TK lattices are shown in figures 4 and 
5 ,  respectively. The whole parameter space is divided into two regions depending 
upon whether the points converge to the fixed point (0,O) or converge to (1, 1) .  As 
a result, we get a critical line which separates the percolating and non-percolating 
regions. On the critical line, the iteration flows towards the isotropic fixed point. This 
means that the critical behaviour of SSP is similar to that of CSP on the same lattice. 
On the other hand, the chain limits of the TC lattice are perfectly unstable and belong 
to the different universality class of d = 1.  These results are consistent with the results 
obtained in the anisotropic bond percolation on the square lattice by Oliveira (1982). 
The full RGT calculation is impossible for the TH lattice, since it becomes colourless. 
So we have approximated the critical line by replacing p &  in equation (2.14) with 3: 
the critical concentration of the resulting unicolour system. The result is also shown 
in figure 5 .  This partial scaling has already come up earlier in the context of the 
three-colour site problem by Kondor (1980). 

The critical line for the TC lattice is given by p >  + p b  = 1 and coincides with the 
exact one by Ikeda (1979). The critical lines for TK and TH lattices are not straight 
and at p B  = 0 they give p x  = 0.6534 and p'A = 0.7071, respectively. These values are 
in fair agreement with the values 0.6527 and 0.6962 known for the KagomC (Sykes 
and Essam 1963) and honeycomb lattices (Djordjevic et a1 1982), respectively. In 
the extreme case of p~ = 1, TK and TH lattices represent the KagomC and honeycomb 
lattices, including up to third neighbour interactions; KagomC* and honeycomb*, 
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4 
Figure 4,Flow diagram for the TC lattice obtained 
by 6 = 43 scaling. The full line is the critical line 
which separates the percolating and non-percolating 
regions. The arrows indicate the direction of flow. 
The full circles show the fixed points. 

0 2 9 2 9  0.3466 

0 

Figure 5. As figure 4 for the TK lattice. For com- 
parison, the phase boundary for the TH lattice due 
to partial scaling is shown by the chain curve. 

respectively. According to Sykes and Essam (1964), KagomC* (honeycomb*) is the 
matching lattice of KagomC (honeycomb) satisfying 

(2.15) 

where p , (L)  denotes the p c  for the L lattice. This matching condition between the 
systems of p B  = 0 and p B  = 1 is correctly reproduced in figure 5 for both TK and TH 
lattices. 

From figures 4 and 5 ,  we can calculate the dependence of the total critical 
concentration p c  = p >  + p i  on site selectivity y defined by y = p B / p A .  The results are 
shown in figure 6. Except for the TC lattice, the total p c  obviously depends on y, and 
the dependence is strongly enhanced for the TH lattice. For y < 1, p c  decreases from 
the value p c  = f of the isotropic case with a decrease of y, while for y > 1, p c  increases 
from with an increase of y up to some finite value p :  characteristic of each lattice. 
The present calculation givesp: = 0.510 and 0.529 for TK and TH lattices, respectively. 
The global y dependence of p c  can be explained reasonably by the variation of 
occupation for the A sublattice which plays an essential role in the build up of the 
infinite network. The presence of the upper limit p :  is due to the fact that at 
p > c A y - l +  cB all additional particles are compulsively located on the A sublattice 
regardless of the value y since the B sites are already fully occupied. A similar 
saturation effect has been found for the SSP on the square lattice (Idogaki and UryG 
1982a). 

3. Large-cell calculation 

In S 2, we discussed the simplest b = J? scaling. However, the scaling has the 
disadvantage of giving an unsatisfactory result of ~ ( 1 )  for the TC lattice. Furthermore, 



2508 T Idogaki and N Ury6 

0 0 5  10 

1 

1 0  0.5 

1- 

1 0  

0.5 P, 

0 

Figure 6. The variation of the total critical concentration p c  with the change of anisotropy 
parameter y = p s / p A .  The insets show magnifications of the strong anisotropy regions. 
The broken lines for 0 s y s 1 represent the concentrations above which all A sites are 
completely occupied, that is p = (1 + y) /2 ,  (3 + y ) / 4  and (2 + y ) / 3  for TC, TK and TH 
lattices, respectively. Similarly, the broken lines for 1 s y s CO show the concentrations 
above which al lB sites are fullyoccupied, i.e. p = (y-' + 1)/2, (3y-I + 1)/4 and (2y-I + 1)/3 
for those three lattices, respectively. 

we have encountered a colourless problem for the TH lattice and we could not verify 
the universality relation for that case. In this section, we consider the larger-cell 
approximation to improve these points. 

3.1. Square-like cell 

A natural way to extend the cell size is to consider a square-like cell consisting of 
b x b sites (Idogaki and UryQ 1982b). This cell division was first done by Yuge (1978) 
for the isotropic triangular lattice, where he succeeded in getting an exact p c  and a 
good estimate of v(2). For the square-like cell, three kinds of prescription have been 
proposed to obtain a renormalised occupation probability (Reynolds et a1 1978). 
Namely, a cell is defined as occupied if a percolating path is spanning the cell, either 
horizontally or vertically (Ro rule), or spanning in a single fixed direction (RI)  or 
spanning both ways (R2). Reynolds et al (1980) have shown that all three transforma- 
tions behave qualitatively the same way and only two of them are independent since 
2R1 = R o +  R2. In the present study we use the R I  rule, which gives the most rapid 
convergence of p c  (Reynolds et a1 1980). 

The b = 2 and b = 3 scalings for the TC lattice are shown in figure 7. In the scaling, 
the cell in which the cr-site locates on a shorter diagonal line is transformed into a 
new a-site with ph. The transformation clearly assures the relation p &  a p b  when 
po  S p B  and vice uersa. By using the R I  rule with an exclusion-inclusion principle, the 
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Figure 7. Transformation of the TC lattice by using a square-like cell of ( a )  6 = 2 and ( b )  
6 = 3 .  

recursion relations for arbitrary b are given by 

where 

In equation (3.2), n is the number of A sites in the cell, i.e. n = b 2 / 2  for even b and 
( b z  + 1 ) / 2  for odd b, and 

(3.3) b*-n-l 
A k  = p f k ( l  - p ~ ) ” - ~  Br = p L ( l  - P S I  

and fi({Bi}) = f i ( p E )  are finite polynomials in p B .  For instance, the explicit formula of 
equation (3.2) is given by 

R ? ( P A ,  P E  1 = A2 + A  1(2Bz + 281)  

(3.4) 

for b = 2 and b = 3,  respectively, and so on. 
As for f i ( p B ) ,  we can show fn-l(0) = n - b and f l ( l )  = b for arbitrary b (Idogaki 

and UryQ 1982b). Then, it is easily seen that equations (3.1) and (3.2) admit the 
following fixed points for any values of b ;  ( p z ,  p i )  = (0, 0) ,  ( 1 ,  l ) ,  ( 1 , O )  and ( 0 , l ) .  
Furthermore, if we note the matching relation for R!b’(pA, p E )  

(3.5) 
R ( b )  

1 ( P A , P B ) + R ! ~ ’ ( ~ - P A ,  l - p B ) = l  

we find the additional isotropic fixed point at ( f ,  t ) ,  and also find the exact phase 
boundary p k  + p i  = 1 for any b. The whole flow diagram has been calculated based 
on b = 2 and b = 3 scaling. The results agree perfectly with those of figure 4 ,  except 
for a slightly fast convergence in successive iteration for b = 3. 

At each fixed point, the scaling powers y i ( d )  can be calculated from equation 
(2.10). In the chain limits (1,O) and (0, l ) ,  we find TZA = T i B  = b and T z B  = T i A  = 0. 
Then we get 

(3.6) yi(d) = In hi/ln b =In  b/ln b = 1 i = l , 2  
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which leads to 

v ( l ) = y ; ' ( l ) = y ; ' ( l ) =  1 (3.7) 

for any value of b. In the same way, at the isotropic fixed point ($, k), the exponent 
v(2) is calculated as 

1.710 b = 2  
b = 3  (3.8) 

and the conjectured value $ (den Nijs 1979) is expected to be approached with the 
increase of b. The results are tabulated in table 1. In the table, the result for the 
anisotropic bond percolation on a square lattice (Oliveira 1982) is shown for com- 
parison. It should be noted that the present RGT calculation gives an exact v(1)  for 
any scaling of b 3 2, in contrast with the bond approach. 

Table 1. The RGT results of the correlation-length critical exponents v(1) and v(2)  in 
site percolation, compared with those in bond percolation (Oliveira 1982). For both 
problems, the crossover exponent 4 = 1 is obtained exactly for any value of b. 

Bond Site 
b v ( 1 )  v(2) v(1) v (2 )  

J3 - - 0.792 1.355 
2 0.631 1.042 1 1.710 
3 0.683 1.099 1 1.651 
4 0.712 - 1 1.624" 

4 4 
Expectedh 1 3 1 3 

a Yuge (1978). 
Reynolds et a1 (1977b), den Nijs (1979). 

A similar calculation has been applied to the other lattices. For TK and TH lattices, 
however, we found that the direct application brings unicolour or three-colour prob- 
lems for b = 2 and 3, and failed to complete the RGT calculation. This shows that the 
hexagonal character of TK and TH lattices cannot be reflected well by a square-like 
cell division, so the scaling by another type of cell is required for these lattices. 

3.2. Hexagonal cell 

For TK and TH lattices, we divide the lattice into a hexagonal cell with seven sites 
(b  = 47). As a result of this, we have three types of the cell having different 
compositions of A and B sites, as shown in figure 8. In the transformation, the 
definition of occupation for a hexagonal cell is somewhat arbitrary and seems not to 
be established yet (Tatsumi 1980, Chakrabarti et a1 1981). For the isotropic case, 
Tatsumi (1980) has used the arithmetic mean of the percolation probabilities between 
the sides bc and de, and between the sides abc and def. However, it cannot be directly 
applied to the type-I1 or type-I11 cells, since those cells have directional asymmetry 
of percolating paths. 
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f e 

a@d b @ @ 
I I 1  I l l  

Figure 8. The three types of hexagonal cells which appear in the b = 45 scaling for TK 
and TH lattices. 

Instead, we consider here an extension of rules Ro,  R1 and R2 primarily adapted 
for the square-like cell. The spirit of these rules niay be regarded as that Ro requires 
the presence of a percolating path, at least, between one set of opposite planes, e.g. 
ab and de, and R 2  requires, at least, between two sets of them, i.e. a crossing of 
percolating flow within the cell. Consequently, for the hexagonal cell, we may define 
R 1  as the arithmetic mean of those Ro and R 2  by analogy with the relation 2R1= 
R o + R 2  for the square-like cell. In the following, we use this definition of R 1 .  The 
occupation probability for each type of cell can be calculated as follows: 

R ;  ( P A ,  p s )  = A6 + 6A5 + 3A4(5B1 + 3Bo) +A3( 17B1+ 3Bo) + 6A2B1 

R:' ( P A ,  PE) = A5 + /14(5B2 i- 1OBl-t. 4Bo) + A3( 10B2 + 15B1 + 3Bo) 

+ A ~ ( ~ B ~ + ~ B I ) + A ~ B Z  (3.9) 
R:"(pA,p,)  =A4+A3(4B3+12B2+9B1+1.5Bo)+A2(6B3+13.5B2+4.5B1) 

+ A I ( ~ . ~ B ~ + ~ B J )  

where Ak and Bl are given by equation ( 3 . 3 )  but with n = 6 ,  5 and 4 for type-I, -11 
and -111 cells, respectively. 

For the n< lattice, type-I and -11 cells appear. After successive twofold scaling as 
in 9 3.2, the recursion relations are given by 

PL = R ' ~ ' ( R Y ( P A ,  P S I ,  R : ( P A ,  p s ) )  P L  =R:(R:'(PA,PB),R:(PA,PB)). (3.10) 
For the TH lattice, type-I and -111 cells appear and successive twofold scaling'is also 
needed. The recursion relations are: 

Pk = R:" PL = R :  (R:"(PA, P S I ,  R :  ( P A ,  P B ) ) .  ( 3 . 1 1 )  

From equations (3.10) and ( 3 . 1 1 ) ,  we found three fixed points @ : , p i )  = (0, 0) ,  
( 1 ,  1 )  and ( 5 ,  $) for both lattices. At the fixed point ( 5 ,  i), we get v ( 2 )  = 1.508 which 
is better than v(2) = 1.767 estimated by Tatsumi (1980) from a similar hexagonal-cell 
calculation on an isotropic triangular lattice. The whole flow diagram obtained by 
iteration calculation of equation ( 3 . 1 1 )  is shown in figure 9.  As expected, the isotropic 
fixed point is stable for the anisotropy perturbation. This is consistent with the results 
in § 2 and also with the universality hypothesis. The flow diagram for the TK lattice 
is almost similar to that of figure 5 and is omitted here. The critical line intersects 
with the pA axis at p >  = 0.6573 and p >  = 0.7147 for TK and TH lattices, respectively. 

The extension of the calculation to a larger hexagonal cell of b =v% is possible 
by using a computer but not performed here. 

( P A ,  Ps), R ;  ( P A ,  Ps)) 
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4 

Figure 9. Flow diagram for the TH lattice by b = J7 scaling. 

4. Summary and concluding remarks 

We have studied the SSP on the TC, TK and TH lattices by RGT. First we performed 
the simplest b = J 3  scaling and succeeded in obtaining precise phase diagrams for 
this two-parameter percolation problem. The critical lines gave good estimates of p c  
for CSP in the extreme anisotropy limits and enabled us to obtain the dependence of 
total p c  on site selectivity. As regards the phase boundary, the RDA discussed in 
Q 1 is equivalent to the linear approximation in RGT and is valid only for the region 
of p A  = p e  except for the TC lattice. From the analysis of critical flow direction, we 
have concluded that the anisotropy of site preference is an irrelevant parameter always 
leading to the same universality. Furthermore, the dimensional crossover between 
d = 2 and d = 1 has been obtained exactly for the TC lattice. 

The calculation has been extended to larger b with a square-like cell consisting 
of 2 x 2 or 3 x 3 sites for the TC lattice and with a hexagonal cell of seven sites for TK 
and TH lattices. In the former the correlation length critical exponent v(1)  = 1 has 
been obtained exactly in the chain limit. Also the larger-cell calculation enabled us 
to avoid the colourless problem for the TH lattice, and we could verify that the flow 
direction was consistent with the other two lattices. 

The numerical results of p c  for CSP obtained from the critical line for SSP are 
summarised in table 2. The accuracy of the critical line does not seem to be improved 
by b =fi scaling. This may be considered to be due to the inadequacy of the 
definition of p '  adopted for the hexagonal cell. As shown by Reynolds et a1 (1980), 
however, the definition of p '  itself plays a progressively smaller role with b + Q). Then 
we would expect the present approximation to become better as the cell size increases 
further. 
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Table 2. Critical concentration p c  for CSP, evaluated by SSP on the triangular lattice. 

RGT 
R D A  b = J ?  b = J ?  Expected: 

Chain 1 1 1 1 
Triangular 2 2 2 z 1 1 1 1 

0.6534 0.6573 0.6527 
Honeycomb z 0.7071 0.7147 0.6962 
Kagom.5 2 

3 

t Sykes and Essam 11963), Djordjevic er a1 (1982). 

In principle, the present calculation can be directly extended to the three- 
dimensional case. We show some typical two-sublattice divisions of the sc lattice in 
figure 10. We consider the interactions up to nth neighbour and the scaling of b = 3 
by two sets of cells (IA, IB) and (11,111) shown in figures 10(a )  and 10(b). For figure 
10(a) ,  we found that in the extreme limit of pa = 0 the SSP for n = 1 gives the CSP on 
the FCC lattice for n = 2.  Also, it is found that SSP for n = 2 gives the CSP on the FCC 

lattice for n = 1 by putting pa = 0. For figure lo@), in the same way, the SSP for n = 3 
gives the CSP on the BCC lattice for n = 1 by putting pe = 0. As in the case of b = dE 
scaling for the TK and TH lattices, those three-dimensional calculations need compre- 
hensive and elaborate numerical work to get p&. It will be an interesting future 
problem to perform the Monte Carlo renormalisation group calculation (k -ynolds et 
a1 1978, 1980) for those systems. 

I A  

:! I!: 

i b i  

Figure 10. The typical two-sublattice divisions of the sc lattice, and the basic cells for 
b = 3 scaling. For details, see the text. 
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